An intuitive guide to convolutional neural networks D Cornelisse free Code Camp, 1-19, 2018 | 72 | 2018 |
Neural payoff machines: Predicting fair and stable payoff allocations among team members D Cornelisse, T Rood, Y Bachrach, M Malinowski, T Kachman Advances in Neural Information Processing Systems 35, 25491-25503, 2022 | 9 | 2022 |
GPUDrive: Data-driven, multi-agent driving simulation at 1 million FPS S Kazemkhani, A Pandya, D Cornelisse, B Shacklett, E Vinitsky arXiv preprint arXiv:2408.01584, 2024 | 3 | 2024 |
Human-compatible driving partners through data-regularized self-play reinforcement learning D Cornelisse, E Vinitsky arXiv preprint arXiv:2403.19648, 2024 | 3 | 2024 |
Using cooperative game theory to prune neural networks M Diaz-Ortiz Jr, B Kempinski, D Cornelisse, Y Bachrach, T Kachman arXiv preprint arXiv:2311.10468, 2023 | 1 | 2023 |
Pruning Neural Networks Using Cooperative Game Theory M Diaz-Ortiz Jr, B Kempinski, D Cornelisse, Y Bachrach, T Kachman Proceedings of the 23rd International Conference on Autonomous Agents and …, 2024 | | 2024 |